Exercices sur la puissance électrique

Exercice 1

Sur l'emballage d'une prise de courant, on lit « 230 V ; 16 A ».

- 1/ Que signifient ces indications?
- 2/ Calculer la puissance limite des appareils utilisables sur cette prise.

Exercice 2

Les lampes L_1 et L_2 sont alimentées par un générateur de $\bf 6 \ V$. 1/ Sur le culot de la lampe L_1 on peut lire « $\bf 6 \ V$; $\bf 6 \ W$ » et sur le culot de la lampe L_2 , on lit « $\bf 6 \ V$; $\bf 2 \ W$ ».

Comment appelle-on ces valeurs? Que signifient-elles?

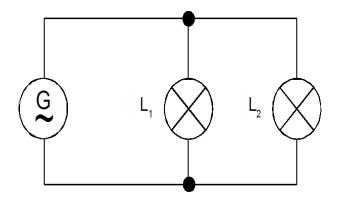
- 2/ Laquelle de ces deux lampes briller le plus ? Justifier
- 3/ Calculer l'intensité efficace I_{eff} qui traverse L₁.
- 4) Calculer l'intensité efficace Ieff qui traverse L2.
- 5/ Quelle est l'intensité efficace à la sortie du générateur ?

Une multiprise électrique porte l'indication P_{max} < 3500W. Les appareils sont branchés dessus en dérivation.

- 1/ Sur cette multiprise, on branche un fer à repasser de 1900 W, un radiateur de 3100 W et une cafetière de 950 W. Quelle est la puissance maximale reçue par la multiprise ? *Commenter ce résultat*.
- 2/ Quelle intensité efficace Ieff a-t-on dans chacun de ces appareils branchés lorsqu'ils fonctionnent?
- 3/ Calculer alors l'intensité efficace I_{eff} qui serait fournie par la multiprise.
- 4/ Quelle intensité efficace maximale I_{max} est supportée par cette multiprise ?
- 5/ Que va-t-il alors se passer si tous les appareils branchés fonctionnent en même temps ?

Exercice 4

1/ Que risque-t-il de se passer si le fil n'est pas adapté ?


2/ On a un radiateur de **7,25 kW**. Quelle section de fil faut-il prévoir à la maison pour l'alimenter ?

Plus l'intensité du courant dans un fil conducteur (ou câble électrique) est grande, plus ce fil s'échauffe. Cette intensité est proportionnelle à la puissance totale des appareils alimentés par ce fil, qui est la somme des puissances de chacun. Pour éviter les risques d'incendie dus à une surintensité dans le fil, le fabriquant du fil indique sa puissance limite: c'est la puissance totale des appareils branchés en dérivation sur le fil à ne pas dépasser. Il indique également la tension nominale du fil: c'est la tension aux bornes des appareils branchés en dérivation quand ils fonctionnent normalement. Cette tension vaut 230 V quand ces appareils sont branchés sur le secteur.

Plus la puissance limite d'un fil conducteur est grande, plus l'intensité dans le fil sera grande et plus sa section est grande.

The second second			
Section du fil	1,5 mm²	2,5 mm²	6 mm²
Puissance limite	3 680 W	4 600 W	7 360 W
Utilisation du fil	Éclairage	Prise de courant	Cuisinière

Exercice 1

Sur l'emballage d'une prise de courant, on lit « 230 V ; 16 A ».

1) Que signifient ces indications?

La tension nominale à ne pas dépasser est de 230 V.

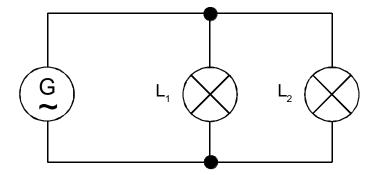
L'intensité nominale à ne pas dépasser est de 16 A.

2) Calculer la puissance limite des appareils utilisables sur cette prise.

 $P = U.I = 230V \times 16A = 3680 W$

Exercice 2

Les lampes L₁ et L₂ sont alimentées par un générateur de 6 V.


1) Sur le culot de la lampe L_1 on peut lire « 6 V ; 6 W » et sur le culot de la lampe L_2 on lit « 6V ; 2W ». Comment appelle-on ces valeurs ? Que signifient-elles ? Ce sont les valeurs nominales : la tension pour laquelle les lampes vont briller normalement et les puissances qui seront alors reçues par ces lampes.

2) Laquelle de ces deux lampes briller le plus ? Justifier La lampe L1 puisque sa puissance nominale est de 6 W.

3) Calculer l'intensité efficace qui traverse L₁. I₁ = P₁ / U = 6W / 6V = 1 A

4) Calculer l'intensité efficace qui traverse L_2 . $I_2 = P_2 / U = 2W / 6V \approx 0.33 A$

5) Quelle est l'intensité efficace à la sortie du générateur ? En dérivation donc : $I = I_1 + I_2 = 1 + 0.33 = 1.33 \text{ A}$

Exercice 3

Une multiprise électrique porte l'indication P_{max}<3500W.

1) Les appareils domestiques sont-ils branchés en série ou en dérivation sur cette multiprise ? Ils sont branchés en dérivation.

2) Sur cette multiprise, on branche un fer à repasser de 1900 W, un radiateur de 3100 W et une cafetière de 950 W. Quelle est la puissance maximale reçue par la multiprise ? Commenter ce résultat. P = 1900W + 3100W + 950W = 5950 W

Cette puissance est inadaptée à cette multiprise dont la puissance maximale doit être inférieure à 3500 W.

3) Quelle intensité efficace a-t-on dans chacun de ces appareils branchés lorsqu'ils fonctionnent ?

Pour le fer à repasser : I_1 = P_1 / U = 1900W / 230V \approx 8,26 A Pour le radiateur : I_1 = P_1 / U = 3100W / 230V I_1 \approx 13,48 A Pour la cafetière : I_1 = P_1 / U = 950W / 230V \approx 4,13 A

4) Calculer alors l'intensité efficace qui serait fournie par la multiprise. En dérivation donc : $I = I_1 + I_2 + I_3 = 8,26 + 4,13 + 13,48 = 25,87$ A

5) Quelle intensité efficace maximale est supportée par cette multiprise ? $I_{max} = P_{max} / U = 3500W / 230V = 15,22 A$

6) Que va-il alors se passer si tous les appareils branchés fonctionnent en même temps ? Il y aura une surintensité donc le coupe circuit (disjoncteur ou fusible) coupera le courant.

Exercice 4

1) Que risque-t-il de se passer si le fil n'est pas adapté?

A cause de la surintensité, le fil va s'échauffer trop fortement et fondre ce qui risque de provoquer un incendie.

2) On a un radiateur de 7,25 kW. Quelle section de fil faut-il prévoir à la maison pour l'alimenter ? 7,25 kW = 7250 W
Il faut donc un fil de 6 mm².